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Issue:  Detection of early-stage micro-cracks are difficult by image
Intensity based methods since micro-cracks have poor visibility.
Solution: Use pixel level frame-wise motion discontinuity to find cracks.

Key Contributions
. Spatial-temporal motion field discontinuity based early-stage crack detector.
. Structured output by graph-cut inference on CRF for high precision detection.
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CRF: Graph-cut

. Crack propagation occurs In three stages : (1) fault initiation, (2) growth and (3)
accelerated growth. Most image intensity based detectors are in stage 2 and 3.

. Early stage crack detection Is important to ensure safety by predicting the growth
of cracks In future. Additionally, it is cheap to perform repairs at early stage.
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. Traditional methods fail to accurately detect early stage crack because of poor
clarity. Hence, we propose to use a spatial-temporal motion features.
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Problem formulation as CRF

Given X, the stacked motion vectors,
find binary matrix Y that maximizes
the MAP distribution.

y = argmax P(Y = y|X)

* Frame the crack detection problem as a pixel-wise binary classification problem
given the dense 2D motion In every frame computed using optical flow.
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Use graph-cut inference - heuristic data and smoothness terms.
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Data and smoothness terms

Data term (NLSTF)
Find distance in temporal motion vectors

h(—1.—1) h(0,~1) h(1,~1)

Min-cut

Smoothness term

Find local orientation using HOG[4]
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Illustration
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Experimental results

« Experiment consists of small brldge specimen with cyclic wheel loading.
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. Qualltatlve and quantltatlve evaluation shows that proposed method can detect early stage

612 mm

cracks (high TPR at 1000 cycles) and has less false positive detections(low FPR overall).
1000 Cycles 5000 Cycles 20000 Cycles
Method TPR FPR F1 [TPR FPR F1 | TPR FPR Fl1
Schmugge [2] 037 0.15 032] 048 0.12 046 | 0.84 031 0.49
Jahanshabhi [1] 078 0.12 0.61 | 080 0.08 0.73|0.92 0.09 0.76
Proposed (NLSTF) | 0.83 0.16 0.62 | 091 009 0.80 | 093 0.06 0.85
Proposed (CRF) | 0.85 0.05 0.80 | 095 0.05 087|093 004 0.89
Proposed (CRF+CC) | 0.85 0.04 0.83 | 095 0.03 092|093 0.03 0.90
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